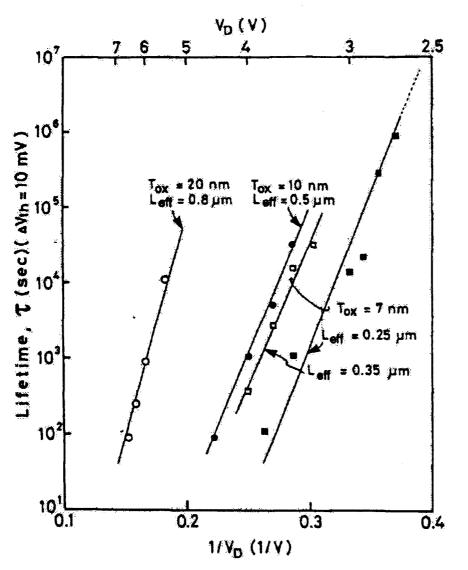
Comparison of Electrical Failure Mechanisms in COTS Parts and Their Scaling with Supply Voltage – An Overview

Udo Lieneweg

Jet Propulsion Laboratory

Mailstop 300-315, 4800 Oak Grove Drive, Pasadena, CA 91109

Phone: 818-354-3444, Fax: 818-393-0045


2nd Annual Microelectronics Reliability and Qualification Workshop October 26-27, 1999, Pasadena Convention Center, Pasadena, California

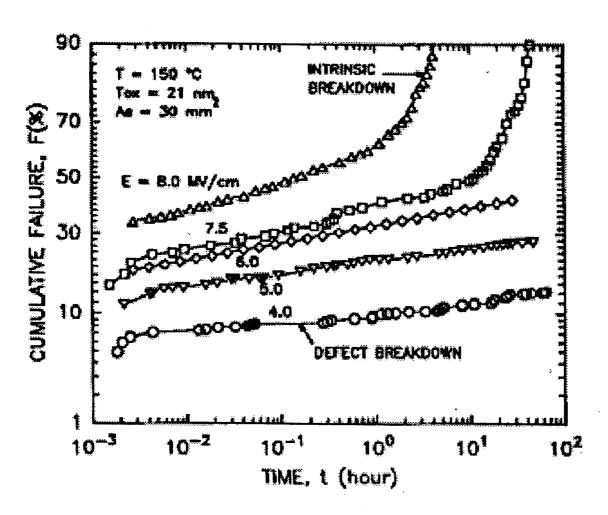
Comparison of Electrical Failure Mechanisms in COTS Parts and Their Scaling with Supply Voltage – An Overview

Abstract

Electrical failure mechanisms in commercial CMOS parts, including hot-carrier effects, gate-oxide breakdown, and electromigration were reviewed with particular emphasis on scaling with supply voltage. The effects of these mechanisms on lifetime are estimated and compared in a typical ASIC chip designed for 5.5-V operation. The improvement in lifetime by reduction of the supply voltage to 3.3 V is followed and a reliability design strategy based on minimizing early failures and maximizing the onset of late failures is derived. An outlook to reliability features of advanced low-power technologies, such as ultra-thin gate-oxides, silicon-on-insulator, and high-conductivity/low-permittivity interconnects concludes the presentation.

Hot-Carrier Lifetime vs. Drain Voltage for Different Technologies

Model:

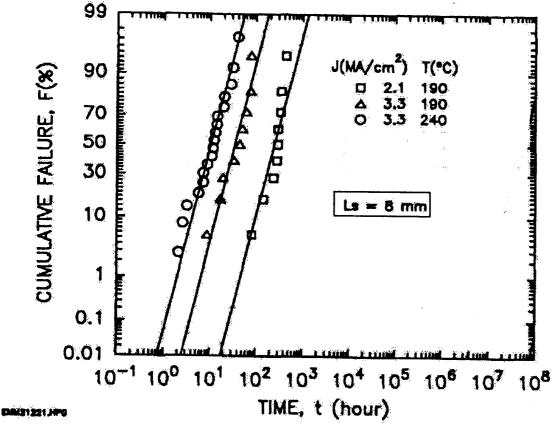

$$\tau = \tau_0 \exp\{b/V_D\}$$

$$b \approx 70 \text{ V} \dots 100 \text{ V}$$

Very strong dependence at least down to 2.5 V

[E. Takeda, C.Y. Yang, A. Miura-Hamada, "Hot-carrier effects in MOS devices", Academic Press, San Diego, 1995]

Gate-Oxide Failures F as Function of Stress at Different Electric Fields E



Model for time to early failures, caused by defects:

$$t_F \propto \exp\{-B E\}$$

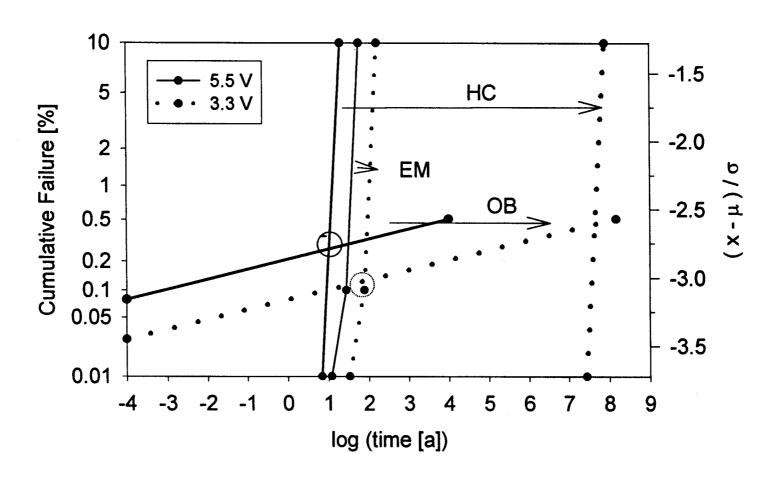
with
 $B = 91.6 \text{ nm/V}$
or
 $t_F \propto \exp\{-V_{ox}/V_B\}$
with
 $V_B = d/B = 0.229 \text{ V}$

[K.C. Boyko and D. L. Gerlach, "Time dependent dielectric breakdown of 210 Angstrom oxides", IEEE IRPS, 1 (1989)]

Electromigration Failures F as Function of Stress at Different Current Densities J and Temperatures T

[M.G. Buehler, B.R. Blaes, G.A. Soli, N. Zamani, and K.A. Hicks, "Design and qualification of the SEU/TD radiation monitor chip", JPL Publ. 92-18, p.15 (1992)]

Model [Mixed Black-McPherson] :


$$t_F \propto [1/j \sinh(\gamma j)]$$
 $\times \exp\{(Q_0 - \gamma_1 j)/k_B T\}$
with
 $\gamma_1 \approx 0.038 \text{ eV cm}^2/\text{MA}$
 $Q_0 \approx 0.63 \text{ eV}$
 $\gamma \approx \gamma_1/k_B T$

For
$$\gamma j \ll 1$$
:
 $t_F \propto [1/j^2]$

Assumptions for a "Typical" CMOS ASIC Circuit

- Chip area 50 mm².
- Total oxide area $A_C = 3 \text{ mm}^2$.
- LDD-NMOSFETs with 1 μm gatelength and 17 nm oxide thickness.
- Metal lines Al-Si, width 2.4 μ m, total length $L_C = 80$ mm.
- Added early EM failure mode, defect density 0.1/cm².

Yearly CMOS circuit failures by gate oxide breakdown (OB), hot carrier degradation (HC), and electromigration (EM) for $V_{DD} = 5.5 \text{ V}$ and 3.3 V

Conclusions

- Steep failure distributions, i.e., Hot Carrier Effects (HC) and Electromigration (EM), limit lifetime.
- Flat failure distribution, extrinsic Oxide Breakdown (OB), limits circuit failure probability.
- Limit values given by (circled) cross-over points, i.e.,

$$-V_{DD} = 5.5 \,\mathrm{V}: F = 0.25 \,\%, t_F = 10 \,\mathrm{a}$$

$$-V_{DD} = 3.3 \text{ V}: F = 0.1 \%, t_F = 80 \text{ a}$$

- Reduction of supply voltage from 5.5 V to 3.3 V :
 - reduces HC lifetime by orders of magnitude
 - reduces EM lifetime only quadratically with voltage ratio
 - reduces OB failure probability from 0.25 % to 0.1 %.
- Assumed extrinsic EM failures of no consequence.

Outlook: New Low-Power Technologies

- Thinner oxides (5-7 nm)
 - Degrade in the form of threshold voltage shift and leakage current before breakdown.
- Ultrathin oxides (< 3 nm)
 - "Soft" breakdown in many steps with a lasting increase of flicker noise.
- Cu-Interconnect Metal
 - Quality of interface with passivation critical for electromigration behavior.
- Low-Permittivity Dielectrics
 - Properties to watch:
 - electrical leakage and/or breakdown, thermal and chemical stability, thermal conductance.
 - Results for silsesquioxane:
 - 10 x leakage of SiO₂, breakdown > 100 V, thermally stable, thermal conductance decreased by 25 %, interlevel capacitance decreased by 30 %.
- Hot-Carrier effects may decrease faster than $1/V_{DD}$ below $V_{DD} = 2.5 \text{ V}$.